Voice conversion based on mixtures of factor analyzers

نویسندگان

  • Yosuke Uto
  • Yoshihiko Nankaku
  • Tomoki Toda
  • Akinobu Lee
  • Keiichi Tokuda
چکیده

This paper describes the voice conversion based on the Mixtures of Factor Analyzers (MFA) which can provide an efficient modeling with a limited amount of training data. As a typical spectral conversion method, a mapping algorithm based on the Gaussian Mixture Model (GMM) has been proposed. In this method two kinds of covariance matrix structures are often used : the diagonal and full covariance matrices. GMM with diagonal covariance matrices requires a large number of mixture components for accurately estimating spectral features. On the other hand, GMM with full covariance matrices needs sufficient training data to estimate model parameters. In order to cope with these problems, we apply MFA to voice conversion. MFA can be regarded as intermediate model between GMM with diagonal covariance and with full covariance. Experimental results show that MFA can improve the conversion accuracy compared with the conventional GMM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems

This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...

متن کامل

Mixtures of common t-factor analyzers for clustering high-dimensional microarray data

MOTIVATION Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the speci...

متن کامل

A Bayesian Approach to Voice Conversion Based on GMMs Using Multiple Model Structures

A spectral conversion method using multiple Gaussian Mixture Models (GMMs) based on the Bayesian framework is proposed. A typical spectral conversion framework is based on a GMM. However, in this conventional method, a GMM-appropriate number of mixtures is dependent on the amount of training data, and thus the number of mixtures should be determined beforehand. In the proposed method, the varia...

متن کامل

Straight-based voice conversion algorithm based on Gaussian mixture model

The voice conversion algorithm based on the Gaussian mixture model (GMM) has also been proposed by Stylianou et al. In this algorithm, the acoustic space of a speaker is represented continuously. In this paper, we apply this GMMbased voice conversion algorithm to STRAIGHT proposed by Kawahara et al., which is recognized as a high quality vocoder. In order to evaluate this voice conversion algor...

متن کامل

Modelling high-dimensional data by mixtures of factor analyzers

We focus on mixtures of factor analyzers from the perspective of a method for model-based density estimation from high-dimensional data, and hence for the clustering of such data. This approach enables a normal mixture model to be 5tted to a sample of n data points of dimension p, where p is large relative to n. The number of free parameters is controlled through the dimension of the latent fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006